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Abstract

We say that a1, . . . , am ∈ C form an algebraically independent system if, for any polynomial

Φ with rational coe�cients, we have Φ (a1, . . . , am) = 0 only if Φ ≡ 0. The aim of this work is

to �nd a set M for which each �nite subset is an algebraically independent system such that

card M = c.

It should be noted that H. Lebesgue [1] and E. Steinitz [2] have proved the existence of a set
M∗, called an �algebraic basis of numbers,� which has the following two properties:

(1) Every �nite subset of M∗ is an algebraically independent system.
(2) For all x /∈ M∗, there is a �nite subset S ⊆ M∗ such that S ∪ {x} is not an algebraically

independent system.
One can conclude, then, that such a set M∗ has cardinality card M∗ = c. However, this set M∗

is constructed using the well-ordering theorem, while we will construct a set M without the use of
the axiom of choice. It should be noted, however, that this set will not satisfy the second property.
It is unlikely that an �algebraic basis of numbers,� that is a set satisfying both properties (1) and
(2), can be constructed without use of the well-ordering theorem.

The set M which we claim will satisfy property (1) is the set consisting of the numbers

At =

∞∑
n=0

2

(
2btnc−2n2

)
, t > 0,

where bxc denotes the greatest integer which is at most x.1 It is clear that this series converges
for t > 0 and that, for s < t, As < At. Hence, card M = c.2 We must now show that any �nite
subset of M is algebraically independent.

We must show that if Φ (x1, . . . , xm) is a polynomial with rational coe�cients, and t1, . . . , tm > 0
pairwise distinct, then Φ (At1 , . . . , Atm) = 0 gives Φ ≡ 0. It is clear that we may look at polynomials
with only integer coe�cients.

We �rst prove a lemma.
Lemma. Let t1, . . . , tm > 0 be pairwise distinct. If ϕ (x1, . . . , xm) is a polynomial with integer

coe�cients which is not identically 0, then there is an N and an ε > 0 so that∣∣ϕ(22bt1nc
, . . . , 22btmnc

) ∣∣ ≥ ε
1Hence, the dyadic expansions of the numbers At are de�ned explicitly. It should be noted that the real reason

for the algebraic independence of At is analogous to the reason that Liouville numbers are transcendental. Whenever
0 < s < t, the number At is better approximated by rational numbers than As, and so they should not be algebraically
dependent.

2We see for s 6= t that As 6= At as, otherwise, Φ (x1, x2) = x1 − x2 would give Φ (As, At) = 0.
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whenever n ≥ N .
Proof.

This proof is by induction on m. For m = 0, ϕ is a constant. If ϕ 6= 0, then we choose N = 1
and ε = |ϕ| > 0.

Now suppose that the result holds for m. We want to show the result holds for m+ 1. Assume,
without loss in generality, that tm+1 is the largest of t1, . . . , tm+1. Then, we have

ϕ (x1, . . . , xm+1) = ψ0 (x1, . . . , xm)xsm+1 + ψ1 (x1, . . . , xm)xs−1
m+1 + · · ·+ ψs (x1, . . . , xm) ,

where ψ0 6≡ 0. For s = 0, ϕ (x1, . . . , xm+1) = ψ0 (x1, . . . , xm), and since the result holds for m,
we are done. So, take s ≥ 1.

Since the result holds for ψ0 (x1, . . . , xm), chooseN and ε > 0 so that
∣∣ψ0

(
22bt1nc

, . . . , 22btmnc
) ∣∣ ≥

ε whenever n ≥ N . Let t = max (t1, . . . , tm) < tm+1, let d be the highest degree of the degrees of
ψ1, . . . , ψs, and let C be the sum of the absolute values of all of its coe�cients. Then, for n ≥ N ,
we have ∣∣ϕ(22bt1nc

, . . . , 22btm+1nc
) ∣∣ ≥ ∣∣ψ0

(
22bt1nc

, . . . , 22btmnc
) ∣∣ · 2s2btm+1nc

−

(∣∣ψ1

(
22bt1nc

, . . . , 22btmnc
) ∣∣2(s−1)2btm+1nc

+ · · ·+
∣∣ψs

(
22bt1nc

, . . . , 22btmnc
) ∣∣) ≥

ε2s2btm+1nc
− C2d2btnc · 2(s−1)2btm+1nc

=

ε2s2btm+1nc
·
(

1− C

ε
2d2btnc−2btm+1nc

)
.

The second factor is always at least 1, and the third factor tends to 1, because tm+1 > t.
Therefore, there is N ′ ≥ N such that, for n ≥ N ′, we have∣∣ϕ(22bt1nc

, . . . , 22btm+1nc
) ∣∣ ≥ ε · 1 · 1

2
=
ε

2
.

QED

We now prove the main theorem.
Theorem. Let t1, . . . , tm > 0 be pairwise distinct, and let Φ (x1, . . . , xm) be a polynomial with

integer coe�cients. Suppose that Φ (At1 , . . . , Atm) = 0. Then, Φ ≡ 0.
Proof.

Suppose, for a contradiction, that Φ 6≡ 0. Let s be the degree of Φ and let Ψ be the homogeneous
part of degree s of Φ. Then, Ψ 6≡ 0. Now, choose C so that for 0 ≤ x1 ≤ y1 ≤ At1 , . . . , 0 ≤
xm ≤ ym ≤ Atm , we have |Φ (x1, . . . , xm)− Φ (y1, . . . , ym) | ≤ C ·max (y1 − x1, . . . , ym − xm). Let
r ≥ max (t1, . . . , tm) be an integer and let D be the sum of the absolute values of the coe�cients of
Ψ (x1, . . . , xm).

Now, let ` ≥ 1 be any integer. Then, we have

∣∣∣Φ (At1 , . . . , Atm)− Φ

(∑̀
n=0

22bt1nc−2n2

, . . . ,
∑̀
n=0

22btmnc−2n2

)∣∣∣ ≤
2



C ·max

( ∞∑
n=`+1

22bt1nc−2n2
, . . . ,

∞∑
n=`+1

22bt1nc−2n2

)
≤ C ·

∞∑
n=`+1

22rn−2n2

.

Whenever n ≥ r, we have

22r(n+1)

22(n+1)2

/22rn

22n2 = 2−2(n+1)2−2rn+2n2
+2r(n+1)

≤

2−2(n+1)2+2n2
+2r(n+1)

< 2−2(n+1)2+2n2+n+1

<
1

2
,

so that for ` ≥ r, we have

∞∑
n=`+1

22rn−2n2

≤ 22r(`+1)−2(`+1)2

( ∞∑
n=0

2−n

)
= 2 · 22r(`+1)−2(`+1)2

=

2−2(`+1)2+2r(`+1)+1 ≤ 2−2(`+1)2+2`(`+1)+1 ≤ 2−2(`+1)2+2`2+`+1

=

2−2`2+`+1(2`−1) ≤ 2−2`2+`+1

.

So when 2`+1 ≥ s+ 1 (such as when ` ≥ s), we have

2−2`2+`+1

≤ 2−(s+1)2`2

=
1

2(s+1)2`2
.

In summary, we have that, for ` ≥ r, s,

∣∣∣Φ (At1 , . . . , Atm)− Φ

(∑̀
n=0

22bt1nc−2n2

, . . . ,
∑̀
n=0

22btmnc−2n2

)∣∣∣ ≤ C

2(s+1)2`2
.

Hence, since Φ (At1 , . . . , Atm) = 0, we have

∣∣∣2s2`2

Φ

(∑̀
n=0

22bt1nc−2n2

, . . . ,
∑̀
n=0

22btmnc−2n2

)∣∣∣ ≤ C

22`2
.

Now the Φ term should be multiplied out. All of its terms are rational with powers of two in
the denominator. We divide these terms into three groups as follows.

The �rst group consists of those terms in which the last term 22bti`c−2n2

remains after taking out

powers of
∑`

n=0 22btinc−2n2

. These terms have denominators of the form 2u, where u ≤ (s− 1) 2`
2

+

2(`+1)2 . So, if we multiply by 2s2`2

, we end up with integers divisible by

2s2`2−(s−1)2`2−2(`−1)2

= 22`2−2(`−1)2

.
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Since the exponent of each term is at least 2`
2 − 2`

2−1 = 2`
2−1, they are also divisible by 22`2−1

.

The second group consists of those terms in which the last term 22bti`c−2`2

is taken out, but only
by parts of Φ of degree strictly less than s. Again, these are rational numbers with denominators

of the form 2u, where now we have u ≤ (s− 1) 2`
2

. After multication by 2s2`2

, we end up with
integers divisible by

2s2`2−(s−1)2`2

= 22`2

,

which is then divisible by 22`2−1.

The third group, �nally, consists of those terms in which the last term 22bti`c−2`2

is taken out,

this time by a part of Φ of degree s. We see, then, that the sum of these terms is
Ψ

(
22bt1`c

,...,22btm`c
)

2s2`
2

which, after multiplication by 2s2`2

is Ψ
(

22bt1`c
, . . . , 22btm`c

)
.

Therefore, we have that

2s2`2

Φ

(∑̀
n=0

22bt1nc−2n2

, . . . ,
∑̀
n=0

22btmnc−2n2

)
= p` + q`,

where, for su�ciently large `, p`, the sum of the terms from the �rst two groups, is an integer

divisible by 22`2−1

, and q`, the sum of the terms from the third group, is Ψ
(

22bt1`c
, . . . , 22btm`c

)
,

which is, hence, an integer.
Therefore, for all su�ciently large `, we have that

|p` + q`| ≤ C2−2`2

.

The right hand side tends to 0, so eventually less than 1, but since p` and q` are integers, we
must have, for su�ciently large `, that p` + q` = 0, which gives

q` = −p`.

Thus, q` must also be divisible by 22`2−1

, but we will show, for all ` su�ciently large, that q` 6= 0,

but that |q`| < 22`2−1

, which is impossible.

By our lemma, we know that q` 6= 0, so it is enough to show that |q`| < 22`2−1

. Now,

|q`| =
∣∣Ψ(22bt1`c

, . . . , 22btm`c
) ∣∣ ≤ D · 2s2r`

.

Therefore, for su�ciently large `, we have that |q`| < 22`2−1

.
QED3

3The proof may be reproduced almost verbatim for any system of numbers

Ck =

∞∑
n=0

22
ϕk(n)−2n

2

, k = 1, 2, . . . ,m,

when the functions ϕk satisfy the following: When n→∞, ϕk (n)→∞, ϕk+1 (n)−ϕk (n)→∞, and n2−ϕk (n)→
∞. This, of course, applies to ϕk (n) = btknc when 0 < t1 < · · · < tm.
As a consequence, it is easy to make c-many more algebraically independent systems of numbers.
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Note: For any t > 0, if Rt is rational, then the setM ′ consisting of At+Rt also satis�es property
(1). In fact, card M = c, because s 6= t implies As + Rs 6= At + Rt (since, otherwise, they would
be a zero of Φ (x1, x2) = (x1 − x2) + (Rs −Rt)). From the algebraic independence of At1 , . . . , Atm

follows the algebraic independence of At1 +Rt1 , . . . , Atm +Rtm .
Since we are free to choose the Rt, we can build sets M ′ which satisfy additional properties.

For example, we can cram M ′ into an arbitrarily small interval a < x < b. We just choose Rt with
a−At < Rt < b−At.

We may also make it so that every interval contains c points ofM ′. Let I1, I2, . . . be the sequence
of all intervals with rational endpoints, where Ip has enpoints ap < bp. Then, for p− 1 < t ≤ p, we
choose rationals Rt so that ap −At < Rt < bp −At.

Remarks. Our set M solves problems posed by S. Mazurkiewicz [3] and S. Ruziewicz [4].
The problem of Mazurkiewicz is: Can we give an example of a set of real numbers such that it

contains any sum, di�erence, product, and quotient of its elements, but it is not all of R? These
conditions are satis�ed by the set of all rational functions with integer coe�cients evaluated at At,
0 < t < 1.

The problem of Ruziewicz is: Can we give an example of an uncountable set of complex numbers
so that, for distinct z1, z2, we have P

(
ei
)
z1 + Q

(
ei
)
z2 + R

(
ei
)
6= 0 when P,Q,R are non-zero

polynomials with rational coe�cients? We solve this as follows:
Let M1 be the set of At, 0 < t ≤ 1, and M2 the set of At, 1 < t ≤ 2. Both have cardinality c,

and one of them satis�es the condition. If

P
(
ei
)
z1 +Q

(
ei
)
z2 +R

(
ei
)

= 0,

U
(
ei
)
z3 + V

(
ei
)
z4 +W

(
ei
)

= 0,

where z1, z2 ∈ M1 and z3, z4 ∈ M2 are pairwise distinct, we may eliminate ei, giving us
Φ (z1, z2, z3, z4) = 0 where Φ 6≡ 0. However, this is impossible, as these are di�erent elements
of M .

Now, it may seem incomplete that we have not decided which of M1 or M2 is the desired set,
but we can �x this by replacing ei with another transcendental number ε with |ε| = 1, as this makes
no di�erence for Ruziewicz' purposes.

To do this, let R be a rational with −1 < A1−R < 1, and set ε = (A1 −R)+ i

√
1− (A1 −R)

2
.

This is transcendental and |ε| = (A1 −R)
2

+ 1 − (A1 −R)
2

= 1. Now, let M be the set of At,
where 1 6= t > 0.

(Received 2 May 1927)

(Translated 4 October 2014)
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�There was a seminar for advanced students in Zürich and von Neumann was in the class. I came
to a certain theorem, and I said it is not proved and it may be di�cult. Von Neumann didn't say
anything, but after �ve minutes he raised his hand. When I called on him, he went to the blackboard
and proceeded to write down the proof. After that, I was afraid of von Neumann.�

- George Pólya
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