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Abstract

We say that ai,...,an € Cform an algebraically independent system if, for any polynomial
® with rational coefficients, we have ® (a1,...,am) = 0 only if ® = 0. The aim of this work is
to find a set M for which each finite subset is an algebraically independent system such that
card M = c.

It should be noted that H. Lebesgue [1] and E. Steinitz [2] have proved the existence of a set
M*, called an “algebraic basis of numbers,” which has the following two properties:

(1) Every finite subset of M* is an algebraically independent system.

(2) For all ¢ M*, there is a finite subset S C M* such that S U {x} is not an algebraically
independent system.

One can conclude, then, that such a set M* has cardinality card M* = ¢. However, this set M*
is constructed using the well-ordering theorem, while we will construct a set M without the use of
the axiom of choice. It should be noted, however, that this set will not satisfy the second property.
It is unlikely that an “algebraic basis of numbers,” that is a set satisfying both properties (1) and
(2), can be constructed without use of the well-ordering theorem.

The set M which we claim will satisfy property (1) is the set consisting of the numbers

A=Y 2<2w_2n2), t>0,
n=0

where || denotes the greatest integer which is at most z.! It is clear that this series converges
for t > 0 and that, for s < t, A, < A;. Hence, card M = ¢.2 We must now show that any finite
subset of M is algebraically independent.

We must show that if ® (x1, ..., x,,) is a polynomial with rational coefficients, and ¢1,...,t, >0
pairwise distinct, then ® (Ay,, ..., Az, ) = 0 gives & = 0. It is clear that we may look at polynomials
with only integer coefficients.

We first prove a lemma.

Lemma. Let ty,...,t, > 0 be pairwise distinct. If ¢ (x1,...,2,) is a polynomial with integer
coefficients which is not identically 0, then there is an N and an € > 0 so that
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Hence, the dyadic expansions of the numbers A; are defined explicitly. It should be noted that the real reason
for the algebraic independence of A; is analogous to the reason that Liouville numbers are transcendental. Whenever
0 < s < t, the number Ay is better approximated by rational numbers than A, and so they should not be algebraically
dependent.

2We see for s # t that As # A; as, otherwise, ® (z1,z2) = 1 — 2 would give ® (As, A¢) = 0.



whenever n > N.

Proof.

This proof is by induction on m. For m = 0, ¢ is a constant. If ¢ # 0, then we choose N =1
and € = |p| > 0.

Now suppose that the result holds for m. We want to show the result holds for m + 1. Assume,

without loss in generality, that ¢, is the largest of ¢1,...,¢,,41. Then, we have
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where ¢ Z 0. For s =0, ¢ (21,...,Zm+1) = %o (T1,--.,%m), and since the result holds for m,
we are done. So, take s > 1.
Since the result holds for ¢ (1, ..., 2y,), choose N and e > 0o that |t (22Um ..., 02t ) | >

e whenever n > N. Let t = max (t1,...,tm) < tm+1, let d be the highest degree of the degrees of
P1,...,%s, and let C be the sum of the absolute values of all of its coefficients. Then, for n > N,
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The second factor is always at least 1, and the third factor tends to 1, because t,,4+1 > t.
Therefore, there is N’ > N such that, for n > N’, we have
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We now prove the main theorem.
Theorem. Let t1,...,t, > 0 be pairwise distinct, and let ® (x1,...,z,,) be a polynomial with
integer coefficients. Suppose that ® (A;,,..., A, ) =0. Then, & = 0.
Proof.

Suppose, for a contradiction, that ® # 0. Let s be the degree of ® and let ¥ be the homogeneous
part of degree s of ®. Then, ¥ # 0. Now, choose C so that for 0 < z; < y; < A;,,...,0 <
T < Ym < Ag,,, we have [P (z1,...,2m) — P (Y1, Ym) | < C-max (Y1 — 1,...,Ym — Tm). Let
r > max (t1,...,t,) be an integer and let D be the sum of the absolute values of the coefficients of
U (T, Tm)-

Now, let £ > 1 be any integer. Then, we have
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So when 2+ > s + 1 (such as when £ > s), we have
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In summary, we have that, for £ > r; s,
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Hence, since @ (Ay,, ..., A,,) =0, we have
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Now the ® term should be multiplied out. All of its terms are rational with powers of two in

the denominator. We divide these terms into three groups as follows.
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The first group consists of those terms in which the last term 2 remains after taking out
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powers of ZfLZO 2 . These terms have denominators of the form 2%, where u < (s — 1) 27 +

2
2(+1)? S0, if we multiply by 252° , we end up with integers divisible by
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Since the exponent of each term is at least 2¢° —2¢°~1 = 2¢°~1_they are also divisible by 22 .
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The second group consists of those terms in which the last term 92 =2 s taken out, but only

by parts of ® of degree strictly less than s. Again, these are rational numbers with denominators

2
of the form 2%, where now we have u < (s — 1)2¢. After multication by 252" we end up with
integers divisible by

2 2 2
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which is then divisible by 22 1.
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The third group, finally, consists of those terms in which the last term g2ttt —2f

is taken out,
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this time by a part of ® of degree s. We see, then, that the sum of these terms is 2
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Therefore, we have that
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where, for sufficiently large ¢, py, the sum of the terms from the first two groups, is an integer
2_
divisible by 22° ", and g, the sum of the terms from the third group, is ¥ (22“1” Ve ,22Um“),

which is, hence, an integer.
Therefore, for all sufficiently large ¢, we have that
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The right hand side tends to 0, so eventually less than 1, but since p, and g, are integers, we
must have, for sufficiently large ¢, that p;, + go = 0, which gives

qe = —Pe-
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Thus, g¢ must also be divisible by 22 , but we will show, for all £ sufficiently large, that ¢, # 0,
2_
but that |ge| < 22" ", which is impossible.
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By our lemma, we know that ¢, # 0, so it is enough to show that |g¢| < 227" Now,
| = | @ (22“1“,...,22“"‘“) |<D.2?7".
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Therefore, for sufficiently large ¢, we have that || < 92"
QED?

3The proof may be reproduced almost verbatim for any system of numbers
o L oek(n) _gn?
k(n)
Cp=>_2° 2 k=1,2,...,m,
n=0

when the functions ¢y, satisfy the following: When n — oo, 1, (n) — o0, w11 (n)—@% (n) — 0o, and n?—py, (n) —
oo. This, of course, applies to ¢y, (n) = [txn]| when 0 < t1 < -+ < tm.
As a consequence, it is easy to make c-many more algebraically independent systems of numbers.



Note: For any t > 0, if R, is rational, then the set M’ consisting of A;+ R; also satisfies property
(1). In fact, card M = ¢, because s # t implies A; + Rs # Ay + Ry (since, otherwise, they would
be a zero of ® (x1,x2) = (x1 — x2) + (Rs — Rt)). From the algebraic independence of A, , ..., Ay,
follows the algebraic independence of A;, + Ry,,..., A, + Ry, -

Since we are free to choose the R;, we can build sets M’ which satisfy additional properties.
For example, we can cram M’ into an arbitrarily small interval a < x < b. We just choose R; with
a— Ay < Ry <b— A

We may also make it so that every interval contains ¢ points of M’. Let I, I5, . .. be the sequence
of all intervals with rational endpoints, where I, has enpoints a,, < b,. Then, for p—1 <t < p, we
choose rationals R; so that a, — A; < Ry < b, — Ay.

Remarks. Our set M solves problems posed by S. Mazurkiewicz [3] and S. Ruziewicz [4].

The problem of Mazurkiewicz is: Can we give an example of a set of real numbers such that it
contains any sum, difference, product, and quotient of its elements, but it is not all of R? These
conditions are satisfied by the set of all rational functions with integer coefficients evaluated at Ay,
0<t<l

The problem of Ruziewicz is: Can we give an example of an uncountable set of complex numbers
so that, for distinct z1, 2z, we have P (ei) z21+Q (ei) 2+ R (ei) # 0 when P, @, R are non-zero
polynomials with rational coefficients? We solve this as follows:

Let M; be the set of A;, 0 <t <1, and M> the set of A;, 1 < ¢t < 2. Both have cardinality ¢,
and one of them satisfies the condition. If

P (ei) 21+ Q (ei) z+ R (ei) =0,

U (ei) z34+V (ei) za+ W (ei) =0,

where 21,2z € M; and z3,24 € M, are pairwise distinct, we may eliminate e, giving us
D (21, 22,23,24) = 0 where ® # 0. However, this is impossible, as these are different elements
of M.

Now, it may seem incomplete that we have not decided which of M; or M, is the desired set,
but we can fix this by replacing e’ with another transcendental number ¢ with |¢| = 1, as this makes
no difference for Ruziewicz’ purposes.

To do this, let R be a rational with —1 < A; —R < 1,and set ¢ = (A1 — R)+iy/1 — (41 — R)*.
This is transcendental and || = (A; — R)®> + 1 — (4; — R)®> = 1. Now, let M be the set of A,
where 1 # ¢ > 0.
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“There was a seminar for advanced students in Ziirich and von Neumann was in the class. I came
to a certain theorem, and I said it is not proved and it may be difficult. Von Neumann didn’t say
anything, but after five minutes he raised his hand. When I called on him, he went to the blackboard
and proceeded to write down the proof. After that, I was afraid of von Neumann.”

- George Polya



